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Abstract. It has been proposed to abandon the requirement that parallel transporters in gauge theories
are unitary (or pseudo-orthogonal). This leads to a geometric interpretation of Vierbein fields as parts of
gauge fields, and non-unitary parallel transport in extra directions yields Higgs fields. In such theories, the
holonomy group H is larger than the gauge group G. Here we study a one-dimensional model with fermions
which retains only the extra dimension, and which is soluble in the sense that its renormalization group flow
may be exactly computed, with G = SU(2) and non-compact H ⊆ GL(2,C), or G = U(2), H = GL(2,C).
In all cases the asymptotic behavior of the Higgs potential is computed, and with one possible exception
for G = SU(2), H = GL(2,C), there is a flow of the action from a UV fixed point which describes a
SU(2)-gauge theory with unitary parallel transporters, to a IR fixed point. We explain how exponential
mass ratios of fermions of different flavor can arise through spontaneous symmetry breaking, within the
general framework.

PACS. 11.10.Hi, 11.10.Kk, 11.15.Ex, 11.15.Tk, 12.15.Ff, 12.15.Hh

1 Introduction

This paper is part of a larger study to explore different pos-
sibilities of giving a geometric interpretation to Higgs fields
by unifying with gauge fields. This theme is of interest to
model builders [1]. They study gauge theories in space-time
of five or more dimensions, often with boundaries called
branes. The associated four-dimensional effective theory is
supposed to exhibit a Higgs potential. We are interested in
how such Higgs potentials can arise as a result of a sequence
of renormalization group (RG) transformations.

By definition, effective field theories have a UV-cutoff
M with the dimension of a mass, andM can be lowered by
a renormalization group transformation [2]. Let us assume
that the cutoff is introduced in the form of a lattice. When
the lattice spacing comes down to the extension of space-
time in the extra direction(s), an effective four-dimensional
theory results.

Our hypothesis is that Higgs fields appear in higher
dimensional field theories in the following way. At the level
of effective theories, they are (parts of) non-unitary par-
allel transporters φ along links of the lattice in the extra
direction or directions. The parallel transporters take their
values in a groupH, typically non-compact, which is larger
than the gauge groupG. They can arise from unitary paral-
lel transporters, i.e. ordinary gauge theories without Higgs
fields, through real space renormalization group transfor-
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mations. Related ideas have been developed in the context
of deconstruction [3]. We are particularly interested in the-
ories on a five-dimensional space-time with two boundaries,
where left handed fermions may live on one of them and
right handed fermions on the other.

In gauge theories, parallel transporters U(C) along
paths C are required by the principles and are determined
by vector potentials. The lattice gauge fields of lattice
gauge theory are parallel transporters. Traditionally they
are unitary maps between vector spaces with scalar prod-
ucts. It has been proposed [4] to abandon the additional
requirement of their unitarity (or pseudo-orthogonality),
U(C)∗ = U(C)−1. Admitting non-unitary parallel trans-
porters appears natural in the light of the general the-
ory [5,6] of complex systems, and in view of the fact that
the requirement of their unitarity finds no natural place in
discrete differential calculus and geometry [7].

This generalization leads to a geometric interpretation
of Vierbein fields as parts of gauge fields, in four dimensions,
while non-unitary parallel transport in extra directions
yields Higgs fields. One gets, besides the unitary gauge
groupG, a larger holonomygroupH ⊃ Gwith an involutive
automorphism θ such that θ(g) = g if and only if g ∈ G.
Only G is a local symmetry, but fields form representation
spaces of H. In lattice models, the lattice gauge fields take
their values in H. Here we study a one-dimensional model
with fermions which retains only the extra dimension, and
which is soluble in the sense that its renormalization group
flow may be exactly computed, with G = SU(2), and
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H ⊆ GL(2,C), or G = U(2), H = GL(2,C). A summary
of results is found in Sect. 4.

The parametrization1 of parallel transporters in extra
directions as φ = eΞU ,U ∈ G exhibits Higgs fieldsΞ which
take their values in the tangent space p to the coset space
H/G. This coset space is a symmetric space in case G is
the maximal compact subgroup of H, and it is determined
by an involutive automorphism of the compact real form
Hc of the complexification of H [8]. p is isomorphic to the
non-compact part of the Lie algebra of H in this case.

There is a remarkable mathematical correspondence
with another geometrization of the Higgs fields, where one
identifies the Higgs fields with conventional gauge fields
in the extra direction(s), and some difficulties associated
with this possibility are overcome by orbifolding. Accord-
ing to the group theoretical classification of Hebecker and
Ratz [9], the possibilities are again classified by involutive
automorphisms of the original gauge group Hc, in the case
of division by Z2 factors. Here, Hc is broken to G.

The physical correspondence is not understood. Finite
dimensional representations and invariants are the same
for H and Hc, by Weyl’s unitary trick. But a RG-study
of Higgs potentials is only possible in our scheme which
is based on non-unitary parallel transporters. Moreover,
this scheme can lead to exponential mass ratios. This is
explained in Sect. 3. A five-dimensional model with mass
splitting between generations is proposed in [10].

To illuminate the essence of the RG-mechanism, con-
sider how qualitative features of models can be understood
in terms of properties of RG-flows in other cases.

Consider mass generation in the O(N)-symmetric two-
dimensional non-linear σ-model. The fields s(z) in the fun-
damental Lagrangean take their values on the sphereSN−1.
A real space RG requires a choice of block spins φ(x). They
are the fields of the effective theory on a block lattice whose
sites x are squares of the original space with points z. One
may choose φ(x) as an average of s(z) over the square x.
But then, φ(x) will no longer take its value in the sphere,
but has fluctuating length |φ(x)|, and a O(N)-invariant
potential V (φ(x)) will appear in the effective action. In
principle one could integrate out the length, returning to
fields on the sphere. But this ceases to be permitted when
the potential becomes flat at φ = 0 at some length scale,
because the integration would then lead to non-localities
in the effective action. The appearance of a mass becomes
manifest when at some still larger length scale the potential
V becomes single well.

Confinement in four-dimensional gauge theories arises
in an analogous fashion when the effective theory becomes
a dielectric gauge theory [11, 12]. The effective lattice ac-
tion [12] depends on non-unitary parallel transporters φ,
and electric flux tubes with energy proportional to their
length form when the potential V (φ) has its absolute min-
imum at φ = 0 (“Ξ = −∞”). At finite temperature T , i.e.
finite extension of the lattice in the fourth direction, the

1 This parametrization is suitable for taking the continuum
limit. If there is only one extra direction, the factor U can be
gauged away.

potentials V may become T dependent, and deconfinement
may result.

In the case of interest in this paper, the Higgs potential
V may be regarded as a function V(Ξ) on p which is in
fact determined by its values on a maximal abelian Lie
algebra a ⊂ p. When one starts from an ordinary gauge
theory, V starts with extreme single well shape and one
hopes for RG-flow to a shape with multiple finite minima
on a. If so, flavor mass splitting results (Sect. 3). The one-
dimensional model exhibits a non-trivial RG-flow, but it
turns out to be too simple to demonstrate the appearance
of multiple minima.

2 The one-dimensional model

We consider a one-dimensional Euclidean lattice model
with fermions. It lives on a chain of lattice spacing a0 = 1
whose sites are labeled by z ∈ Z.

The Fermi fields ψ(z), ψ̄(z) sit on the sites of the chain
Λ0. They have only one spin component, but two color-
components. Elements φ of H ⊆ GL(2,C) can act on
them. They transform according to the fundamental rep-
resentation of the gauge group G = SU(2). As usual, ψ
and ψ̄ are treated as independent integration variables in
the Feynman–Kac path integral [16] .

With every link (z, z + 1) and its adjoint (z + 1, z)
between neighboring sites there is associated a possibly
non-unitary lattice gauge field (parallel transporter) φ(z+
1, z) ∈ H and its adjoint,

φ(z, z + 1) = φ(z + 1, z)∗.

The groups of interest are G = SU(2),

H = R+SU(2), SL(2,C),R+SL(2,C), GL(2,C) .

In Sect. 12 the results will be extended to

G = U(2), H = GL(2,C) .

Under a SU(2) gauge transformation,

ψ(z) �→ u(z)ψ(z) ,

φ(z + 1) �→ u(z + 1)φ(z + 1, z)u(z)−1 .

The initial action is

S0(ψ, ψ̄, φ) =
∑

z

(
S0

F(z, z + 1) − V (φ(z, z + 1))
)
,

S0
F(z, z + 1) = zψ̄(z)φ(z, z + 1)ψ(z + 1)

+z̄ψ̄(z + 1)φ(z + 1, z)ψ(z) . (1)

The constant factor z and its complex conjugate z̄ are in-
cluded for later convenience. V (Φ) is interpreted as a Higgs
potential. It is a real function of Φ ∈ H with the following
further property, which will be shared by not necessarily
real coefficients in the effective actions:

V (Φ∗) = V (Φ) . (2)
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The action is required to be invariant under SU(2)-gauge
transformations. Therefore the Higgs potential has the bi-
invariance property

V (u1Φu2) = V (Φ) for all u1, u2 ∈ G, Φ ∈ H . (3)

The path integral involves the Haar measure dΦ on H
to integrate over the lattice gauge fields φ(z + 1, z). We
assume that e−V (Φ) is integrable and square integrable on
the group H; hence

V (Φ) �→ +∞ when ||Φ|| �→ ∞.

The initial Boltzmann factor is

B0(ψ, ψ̄, φ) = eS0
=

∏
z

B0(z, z + 1)

=
∏
z

B0
F(z, z + 1)e−V 0(φ(z,z+1)) ,

where B0(z, z + 1) depends on ψ(z), ψ(z), ψ(z + 1), ψ(z +
1), φ(z, z + 1).

For the groups studied here,Φ ∈ H can be parametrized
as Φ = u1d(η)u2, ui ∈ G, and d(η) a diagonal matrix
depending on a parameter η in a linear space a. Hence

V (Φ) = V(η) (4)

by G-bi-invariance. There is always a discrete groupWT of
linear transformations η �→ w(η) of a which are induced by
transformations in G, viz. d(w(η)) = gd(η)g−1 for suitable
g ∈ G. It follows that

V(η) = V(w(η)), w ∈ WT . (5)

We will show in Sect. 3 that flavor mass splitting results
when this symmetry underWT is broken spontaneously, i.e.
if the orbits of minima of V do not consist of a single point.

In the rest of this paper we study the real space renor-
malization group (RG) flow of this one-dimensional model.
After n renormalization group steps, the model lives on a
chain Λn ⊂ Λ0 of lattice spacing an = Lna0 and depends
on fields ψn, ψ̄n on the sites of the block lattice Λn and
on lattice gauge fields φn(z, z + an) sitting on the links.
Somewhat surprisingly, it turns out that the block side L
has to be chosen odd, and we choose L = 3. For L = 2,
the effective Boltzmann factor would not admit taking the
logarithm to obtain the effective action; see Sect. 6.2.

The block spin transformation will act on the fermions
by decimation, so that

ψn(z) = ψ(z) for z ∈ Λn (6)

and similarly for ψ. For the gauge fields, the appropriate
choice of block spin is

φn+1(z + 3an, z) = φn(z + 3an, z + 2an)ε

×φn(z + an, z + 2an)TεT

×φn(z + an, z) ,

for n = 0, 1, 2, . . ., with φ0 = φ, a0 = 1. The expression
involves the antisymmetric tensor ε in two dimensions, with
ε12 = 1, and AT stands for the transpose of the matrix A.
In particular

φ1(z + 3, z) = φ(z + 3, z + 2)ε (7)

×φ(z + 1, z + 2)TεTφ(z + 1, z) ,

Under the RG-transformation steps considered here, the
effective actions will remain strictly local in the sense that
they are sums of contributions from block links,

Sn(ψn, ψ
n
, φn) =

∑
z∈Λn

Sn(z, z + an) ,

with Sn(z, z+an) depending only on ψn(z), ψ
n
(z), ψn(z+

an), ψ
n
(z + an), and φn(z, z + an).

When H is not a subgroup of SL(2,C), the effective
actions are more complicated than (1). Integration of the
Higgs fields φ produces 4-fermion, 6-fermion and 8-fermion
interactions, with φ-dependent coefficients. We present re-
cursion relations for the corresponding coefficients, and
their solution. The coefficients in the effective action are
obtained by taking the logarithm. In case H = SL(2,C)
there is a great simplification, so that this model is nearly
trivial. The effective action retains the form (1), and the
flow of the effective Higgs potential V receives no contri-
butions from the fermions.

3 Generation of flavor mass splitting

We wish to explain how non-unitary parallel transporters
may lead to exponential mass splitting.

For definiteness consider first H = SL(2,C), G =
SU(2).MatricesA ∈ SL(2,C)maybeparametrized asA =
u1d(η)u2 with ui ∈ G, η real and d(η) = diag(e−η/2, eη/2).
There is a w ∈ G such that wd(η)w−1 = d(−η); cf. Lemma
3 of Sect. 7. The bi-invariance property (3) implies that
V(η) = V (d(η)) obeys

V(η) = V(−η).
Suppose that the orbit of the minima under the discrete
groupWT = {1,−1} is non-trivial; then the minima of V(η)
are at ±η̂ �= 0. Then at the minima of V (φ), φ = u1d(η̂)u2
and the interaction term becomes

zΨφΨ =
2∑

α=1

Ψ
′
αmαΨ

′
α , (8)

with Ψ
′
= Ψu1, Ψ

′ = u2Ψ , and masses

m1 = ze−η̂/2 , m2 = zeη̂/2 .

We see that we have fermions of two flavors with differ-
ent masses.

Although the one-dimensional model does not show this
feature, we hope that in realistic models there is a RG-flow
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from an infinitely deep single well V as corresponds to
ordinary gauge theory to V with multiple minima η. If the
RG-flow is stopped there because the extra dimension has
finite extent, we get flavor mass splitting.

Let us explain how this generalizes to other groups G,
assuming G is the maximal compact subgroup of H. In
the notation of this paper, which is non-standard in group
theory, the Cartan decomposition of the Lie algebra h of
H reads h = g + p, where g is the Lie algebra of G, and
[h, p] ⊆ p, [p, p] ⊆ g. At the group level, this translates
into the decomposition φ = eΞU of parallel transporters
φ ∈ H in the extra direction(s), with U ∈ G, Ξ ∈ p. When
non-zero, Ξ may be interpreted as a Higgs field. The Higgs
potential V (φ) may be regarded as a function V(Ξ) on p
which is invariant under Ξ �→ gΞg−1 for g ∈ G.

p contains the non-compact part a of a maximally non-
compact Cartan subalgebra of h. Because every element
of p is conjugate under G to an element η of a, the Higgs
potential may equally be regarded as a function V(η) on a
which is invariant under elements of the so-called restricted
Weyl group WT . WT consists of transformations a �→ a
which are of the form2 η �→ w(η) = Ad(g)η for suitable
g ∈ G.

Spontaneous symmetry breaking and mass splitting oc-
curs when non-trivial orbits of minima η̂ of V(η ∈ a) under
WT appear. Since a is commutative, the minima η̂ may be
regarded as diagonal matrices, with entries η̂i. The masses
depend exponentially on them,

mi = zeη̂i .

A classification of possible unbroken subgroups of G in
terms of properties of the restricted roots (or parabolic
subgroups) of H was derived by de Riese [13] for simple
groups H. Symmetry breaking to a discrete subgroup is
possible when a is a completely non-compact Cartan sub-
algebra of h [14].

4 Summary of results on the RG-flow

4.1 General form of the effective action

In case H �= SL(2,C), non-bilinear fermion actions will be
produced by the RG-flow. It follows from the Fierz identi-
ties, Lemma 1, that the most general action has the form

Sn(z, z + an)

= cn0 + cn1L
n + c̄n1 L̄

n + cn2k
n + c̄n2 k̄

n + cn3L
nL̄n

+cn4k
nL̄n + c̄n4 k̄

nLn + cn5k
nk̄n , (9)

where

Ln = ψ(z)φn(z, z + an)ψ(z + an) , (10)

L̄n = ψ(z + an)φn(z + an, z)ψ(z) ,

2 Ad is the adjoint action of H on its Lie algebra h; in terms
of matrices Ad(g)η = gηg−1.

kn =
1
4
ψεψ(z) × ψεψ(z + an) , (11)

k̄n =
1
4
ψεψ(z + an) × ψεψ(z) ,

and where cni are functions of φn(z, z+an) = φn(z+an, z)∗;
c̄ni is the complex conjugate of cni , and cn0 , cn3 and cn5 are real.
In particular, cn0 is the negative effective Higgs potential

cn0 = −V n (φn(z, z + an)) .

We identify V 0 = V .
The Boltzmann factor will have the same general form,

Bn(z, z + an)

= an
0 + an

1L
n + ān

1 L̄
n + an

2k
n + ān

2 k̄
n + an

3L
nL̄n

+an
4k

nL̄n + ān
4 k̄

nLn + an
5k

nk̄n , (12)

with an
0 = exp (−V n (φn(z, z + an))).

In more careful notation we write

an
i = an

i (z, z + an) = an
i [φn(z, z + an)] ,

ān
i = ān

i (z, z + an) = an
i [φn(z, z + an)] .

The following reality requirements will be satisfied:

an
j [Φ∗] = ān

j [Φ]

and similarly for the coefficients cnj of the action. It follows
from (2) that they are fulfilled for the initial values a0

j , and
they will pass through the recursion relations.

4.2 Flow of the effective action for general H

Theorem 1 (RG-flow for generalH)The coefficientsan
i [Φ]

in the effective Boltzmann-factor obey the following recur-
sion relations:

an+1
0 [Φ] = an

0 ∗ ān
5 ∗ an

0 [Φ] ,

an+1
1 [Φ] = an

1 ∗ ān
4 ∗ an

1 [Φ] ,

an+1
2 [Φ] = an

2 ∗ ān
2 ∗ an

2 [Φ] ,

an+1
3 [Φ] = an

3 ∗ ān
3 ∗ an

3 [Φ] ,

an+1
4 [Φ] = an

4 ∗ ān
1 ∗ an

4 [Φ] ,

an+1
5 [Φ] = an

5 ∗ ān
0 ∗ an

5 [Φ] ,

where ∗ is the convolution product on the group H, and
Φ ∈ H (ān

i = an
i for i = 0, 3, 5).

All the coefficients are SU(2)-bi-invariant functions on
H, viz. ai[u1Φu2] = ai[Φ] for Φ ∈ H, u1, u2 ∈ SU(2).

The coefficients cni in the effective action are related to
an

i by Proposition 2 of Sect. 10.

We may turn the convolution product into a product by
harmonic analysis on the group H.

For our groups H, every unitary irreducible represen-
tation contains at most one normalized SU(2)-invariant
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vector in its representation space. Let us denote byΞ those
representations which possess such a vector, and which con-
tribute to the harmonic expansion of good functions (=
square integrable on the group), and let us denote the re-
striction of the Plancherel measure to such representations
by dΞ.

Let us denote the corresponding matrix element of the
representation operator by PΞ(Φ) and call it a spherical
function.GoodSU(2)-bi-invariant functions onH admit an
expansion in spherical functions, f [Φ] =

∫
dΞf̃(Ξ)PΞ(Φ).

Under harmonic analysis, convolutions turn into products.
Therefore we have the following corollary of the recur-
sion relations.

Corollary 1 Write āi = aī. Then,

an+1
i [Φ] =

∫
dΞ ãn+1

i (Ξ) PΞ(Φ) ,

with Fourier coefficients

ãn+1
i (Ξ) =

∑
jkl

di
jklã

n
j (Ξ)ãn

k (Ξ)ãn
l (Ξ) ,

where
ãn

i (Ξ) =
∫

H

dΦ an
i [Φ]PΞ(Φ−1) .

The sum over j, k, l = 0, 1, 1̄, 2, 2̄, 3, 4, 4̄, 5 has only one
non-vanishing term, which is equal to 1. The non-vanishing
coefficients are

d0
050, d

1
14̄1, d

2
22̄2, d

3
333, d

4
41̄4, d

5
505 ;

d1̄
1̄41̄, d

2̄
2̄22̄, d

4̄
4̄14̄ .

The explicit description ofΞ and PΞ for the various groups
H is found in Appendix A.

The result is also valid for H = SL(2,C). It permits
one to compute the renormalization group flow when one
starts with a more general action than (1).

4.3 Flow between fixed points

The asymptotic behavior of the Higgs potential after many
RG-steps can be computed. It becomes flat in the case
R+SU(2), and tends to a definite function on H in the
other cases. This is also true for the model with G =
U(2), H = GL(2,C).

There is aUVfixedpointwhichdescribes aSU(2)-gauge
theory with fermions with unitary parallel transporters
φ(z, z + 1) ∈ SU(2),

e−V (Φ) = δSU(2)(Φ) . (13)

δSU(2)(Φ) is a δ-function concentrated on SU(2) ⊂ H, so
that

∫
H

dΦf(Φ)δSU(2)(Φ) =
∫

SU(2) duf(u). Since the uni-
tary parallel transporters may be transformed away in one
dimension, this model is equivalent to a free fermion theory.
The asymptotic behavior of the model after a large number
n of RG-steps may be computed, starting from e−V (ζd(η))

which may be arbitrarily close to the UV fixed point (13)
and satisfies the following assumptions. It is square inte-
grable on H, piecewise continuous, and

∫
dΦ|ζ|εeε|η|e−V <

∞ for some ε > 0.
In all cases, including G = U(2), H = GL(2,C) but

with the possible exception of G = SU(2), H = GL(2,C),
there is a flow away from this fixed point and towards a
IR fixed point. In the exceptional case we are unable to
compute the asymptotic behavior of some coefficients in
the fermionic action other than the Higgs potential.

The caseG = SU(2), H = GL(2,C) is different from all
the others in that G is not the maximal compact subgroup
of H.

H = SL(2,C)

We use the parametrization A = u1d(η)u2 of elements of
A ∈ SL(2,C), that will be given explicitly in Sect. 6.4.

Choose the additive constant in V such that∫
SL(2,C)

e−V (A)dA = 1 .

Let
b =

∫
1
12

sinh2 ηdηη2e−V (d(η))

and B = Nb,N = 3n. Then

e−V n(d(η)) ∼ 1
(2πB)3/2

η

4 sinh η
exp

(
− 1

8B
η2

)
. (14)

The Gaussian factor tends to 1 as n �→ ∞ because B ∝ 3n.

Preliminaries for general H

We note that a0
0(Φ) and a0

5(Φ) are positive. By our as-
sumptions, a0

0dΦ and a0
5(Φ)dΦ are therefore normalizable

measures, and so is their convolution. Let the additive
constant in V be chosen so that the measure a0

0 ∗ a0
5dΦ is

normalized to one, and let N =
∫

dΦe−V (Φ).

R+SU(2)

Elements of R+SU(2) have the form ru with r > 0 and
u ∈ SU(2), but e−V (ru) and det(ru) are both independent
of u. Let

a =
∫

dr
r

ln r (a0
0 ∗ a0

5)(ru) ,

a′ =
∫

dr
r

ln r a0
0(ru) ,

b =
∫

dr
r

ln2 r (a0
0 ∗ a0

5)(ru) ,

b′ =
∫

dr
r

ln2 r a0
0(ru) ,
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A = a′ +Na ,

B = b′ +Nb ,

N =
1
2

(3n − 1) .

Then the asymptotic behavior of the Higgs potential is
as follows:

e−V n(ru) ∼ N

(2πB)1/2 exp
(

− 1
2B

ln2(reA)
)
.

The constant A grows like N , but the term proportional
N can be transformed away by a wave function renor-
malization. This is equivalent to modifying the block spin
definition to

φn+1(z + 3an, z) = Z1/2φn(z + 3an, z + 2an)ε

×φn(z + an, z + 2an)TεTφn(z + an, z) ,

with a suitable n-independent constant Z. When A stays
bounded, the exponential factor tends to 1 for large n, so
that the Higgs potential becomes flat.

GL(2,C) and R+SL(2,C)

The asymptotic behavior of e−V (ζd(η)) is independent of
the phase of ζ and combines the factors encountered in the
previously considered cases:

e−V n(ζd(η)) ∼ N

(2πB)3/2(2πB′)1/2

η

4 sinh η

× exp
(

− 1
8B

η2 − 1
2B′ ln2 (|ζ|eA

))
,

with constantsA,B′ which are of orderN withN = 1
2 (3n−

1) andB of order 3n and can be computed from the starting
values of V similarly as in the other cases. By a wave
function renormalization, A can be transformed to O(1),
and the exponential then tends to a constant in the limit.

5 Initial Boltzmannian

To obtain starting values a0
i for the RG-flow for general

H, we need to compute B0
F(z, z + 1) = eS0

F(z,z+1) for the
action (1). We retain the definitions (10) of L = L0, L̄ =
L̄0, k = k0 and k̄ = k̄0 and introduce

l = l(z, z + 1)

= det (φ(z, z + 1))ψεψ(z) × ψεψ(z + 1)

= 4 det (φ(z, z + 1)) k(z, z + 1) ,

l̄ = l̄(z, z + 1)

= det (φ(z + 1, z))ψεψ(z + 1) × ψεψ(z)

= 4 det (φ(z + 1, z)) k̄(z, z + 1) .

We will make use of the following identities.

Lemma 1 For Φ ∈ GL(2,C) and 2-component Grass-
mann variables ψ �= ψ,

(
ψΦψ

)2
= − 1

2
[detΦ]ψεψ × ψεψ.

Proof. The lemma is an immediate consequence of the iden-
tities

εφTε−1 = [detφ]φ−1 , (15)

ψαψβ =
1
2
εαβψεψ , ψαψβ = − 1

2
εαβψεψ .

It follows that

L2 = − 1
2
l and L̄2 = − 1

2
l̄ .

The expansion of the exponential stops because products
of more than two ψ’s or more than two ψ’s at any site
vanish. As a result one obtains

B0
F(z, z + 1)

= 1 + zL+ z̄L̄− 1
4

z2l + zz̄LL̄− 1
4

z̄2 l̄

− 1
4

z2z̄lL̄− 1
4

zz̄2 l̄L+
1
16

z2z̄2ll̄ . (16)

For the coefficients inB0(z, z+1)=B0
F(z, z+1)e−V (φ(z,z+1)),

this yields the following initial values:

a0
i = b0i e

−V 0
(17)

and

b00 = 1 ,

b01 = z ,

b02 = −z2 detφ ,

b03 = zz̄ ,

b04 = −z2z̄detφ ,

b05 = z2z̄2 detφdetφ∗ , (18)

with the abbreviations φ = φ(z, z+1), V 0 = V (φ(z, z+1))
and l = 4[detφ]k as defined above.

6 Integration of the fermions

We integrate the Fermi fields ψ(z) and ψ̄(z) attached to
sites of the lattice Λ0 which are not sites of the block
lattice Λ1. This yields a semi-effective Boltzmann factor
B̂1(ψn, ψ̄n, φ) which depends on the Fermi fields on the
block lattice only but will still involve the lattice gauge
field φ on all links of the original lattice Λ0.

We admit Higgs fields φ(z + 1, z) ∈ GL(2,C). We will
make use of the fact that for φ ∈ GL(2,C) (15) is valid
and −ε = εT = ε−1. For φ ∈ SL(2,C), detφ = 1.
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6.1 Basic integration formulae

We have two Grassmann variables, ψα, α = 1, 2, attached
to each site z ∈ Λ0 and two further Grassmann variables
ψα. According to the rules for Berezin integrals∫

d2ψ ψα = 0 ,
∫

d2ψ ψαψβ = εαβ ,

∫
d2ψ ψα = 0 ,

∫
d2ψ ψαψβ = εαβ . (19)

6.2 The need for odd block lattice spacing

One might think of defining an effective Boltzmann factor
on a block lattice of lattice spacing a1 = 2by integrating out
the Fermi fields ψ(z), ψ(z) at even lattice sites z. However
the resulting Boltzmann possesses no logarithm. To see the
problem, it suffices to consider the original action (1) with
BoltzmannianB0

F(z, z+1)e−V (φ(z,z+1)) and with z = z̄ = 1.
Expanding the exponentials BF(z, z + 1) into finite sums
of non-vanishing terms and applying (19) one computes∫

d2ψ(z)d2ψ(z)B0
F(z − 1, z)B0

F(z, z + 1). One finds that
it contains no term of zeroth order in the Fermi fields.
Therefore it possesses no logarithm, and the effective action
is not defined.

6.3 The semi-effective Boltzmannian for block size 3

The problem disappears when we take odd lattice spacing
a1 = 3. In this case the integration of ψ(z+ 1), ψ(z+ 1) is
combined with an integration of the Fermi fields attached
to site z+ 2. We start from a general Boltzmannian of the
form (12) and compute the semi-effective Boltzmannian,

B̂1(ψ, ψ̄, φ) =
∏

z∈Λ1

B̂1
F(z, z + 3) ,

B̂1
F(z, z + 3) =

∫
d2ψ(z + 1)d2ψ(z + 1)d2ψ(z + 2)

×d2ψ(z + 2)B0(z, z + 1)

×B0(z + 1, z + 2)B0(z + 2, z + 3) .

We adopt the same choice (7) of block spin as before,
viz.

φ1(z + 3, z)

= φ(z + 3, z + 2)εφ(z + 1, z + 2)TεTφ(z + 1, z) .

We retain the notation k, L introduced before in (10)
and (11).

Without loss of generality, we assume that the origi-
nal action lives on the lattice Λ0. This can be achieved
by rescaling.

The semi-effective action B̂1
F(z, z+3) will have the same

form (12), except that the coefficients an
i are replaced by

coefficients â1
i (z, z + 3) which depend on the Higgs field

on the fine lattice Λ0. More particularly, they depend on
φ1 = φ(z, z+1), φ2 = φ(z+1, z+2) = φ(z+2, z+1)∗, φ3 =
φ(z + 2, z + 3).

Lemma 2 Let us use the abbreviations∫
. . .

=
∫

d2ψ(z + 1)d2ψ(z + 1)d2ψ(z + 2)d2ψ(z + 2) . . .

and

L1 = L0(z, z + 1) , L2 = L0(z + 1, z + 2) ,

L3 = L0(z + 2, z + 3)

etc., and understand that L1 = L1(z, z + 3) etc. Then
∫

(kk̄)2 = 1 , (20)

∫
L1(L̄k)2L3 = L1 , (21)

∫
L̄1(Lk̄)2L̄3 = L̄1 , (22)

∫
k1k2k3 = k1 , (23)

∫
k̄1k̄2k̄3 = k̄1 , (24)

∫
(L̄k)1L2(L̄k)3 = L̄1k1 , (25)

∫
(Lk̄)1L̄2(Lk̄)3 = L1k̄1 , (26)

∫
(kk̄)1(kk̄)3 = k1k̄1 , (27)

∫
(LL̄)1(LL̄)2(LL̄)3 = (L1L̄1) , (28)

and all other integrals of the form
∫
X1Y2Z3 vanish, for

X,Y, Z = L, L̄, k, k̄,L̄k, . . .

Proof. Using the rules of Berezin integration, one notices
that only those factorsX1Y2Z3 do not integrate to zero for
which there are exactly two factors ψ·(z + 1), two factors
ψ·(z + 1), two factors ψ·(z + 2) and two factors ψ·(z + 2).
Computing their integrals according to the rules of Sect. 6.1
furnishes the above result.

Using Lemma 2, one can compute
∫
B̂0(z, z + 1)B̂0(z + 1, z + 2)B̂0(z + 2, z + 3)

as a sum of terms X1
i = 1, L1, L̄1, . . . multiplied with coef-

ficients â1
i (z, z+3). We write these coefficients in the form

â1
i (z, z + 3) =

∑
jkl

di
jklaj(z, z + 1)āk(z + 1, z + 2)

×al(z + 2, z + 3) . (29)
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We use again the notation aj̄ = āj . With some foresight we
chose to define di

jkl so that the second factor ai(z+1, z+2)
appears complex conjugated. This is merely a convention,
since

∑
jkl d

i
jklaj ākal =

∑
jkl d

i
jk̄l
ajakal.

With this convention one finds that the non-vanishing
coefficients di

jkl are equal to 1, and they are as listed at
the end of Corollary 1. We note that

āj(z + 1, z + 2) = āj [φ(z + 1, z + 2)]

= aj [φ(z + 2, z + 1)] . (30)

6.4 The semi-effective Boltzmannian
for H = SL(2, C)

Here we specialize to Higgs fields φ ∈ SL(2,C). In this case,
both the initial values (18) and the recursion relations (29)
simplify, because detφ = 1.

Proposition 1 Consider the model with holonomy group
H = SL(2,C). Starting from the initial action (1), the
effective action after the first, and therefore after every
RG-step, retains the form (1). We have

S1(ψ1, ψ̄1, φ1) =
∑
z∈Λ1

S1(z, z + 3) ,

S1(z, z + 3) = z1ψ
1
(z)φ1(z, z + 3)ψ1(z + 3)

+z̄1ψ
1
(z + 3)φ1(z + 3, z)ψ1(z)

−V 1(φ1(z, z + 3)) .

In particular the semi-effective Boltzmannian for H =
SL(2,C) after one RG-step has the form

B̂1(z, z + 3)

= (zz̄)2eS1
F(z,z+3)

×e−V (φ(z,z+1))−V (φ(z+1,z+2))−V (φ(z+2,z+3))

S1
F(z, z + 3)

= z1ψ̄1(z)φ1(z, z + 3)ψ1(z + 3)

+z̄1ψ̄1(z + 3)φ1(z + 3, z)ψ1(z) .

with z1 = −(z)2z̄−1 and effective Higgs potential V 1 as
described below. a1

i = (z)2(z̄)2b1i e
−V 1

and b1i is as in (18)
after having replaced z by z1 with detφ = 1.

Proof. Because z are constants and detφ = 1, the starting
coefficients a0

i , (17), which determine the original Boltz-
mannian (16), become φ independent except for overall
factors e−V 0(φ(z,z+1)) common to all of them which may
be pulled out. It follows from (29) that the coefficients
â1

i have the same form as the coefficients in the original
Boltzmannian (16) except for the common overall-factor

(zz̄)2e−V 0(φ(z,z+1))−V 0(φ(z+1,z+2))−V 0(φ(z+2,z+3))

and replacement of z by z1 as defined in the proposition,
the factor (zz̄)2 remains in the Boltzmannian. Note that
(z1z̄1)2 = (zz̄)2.

Since the original Boltzmannian (16) came from the
action (1), the same will be true with appropriate adjust-
ments for the semi-effective Boltzmannian, as stated in the
proposition.

7 Consequences of gauge invariance

Here we derive the consequences ofSU(2) gauge invariance,
including (33).

Under SU(2) gauge transformations, φ(z, z + 1) �→
u(z)φ(z, z+1)u(z+1)−1. Since u(z) and u(z+1) are both
arbitrary elements of SU(2), gauge invariance of V implies
that V (Φ) = V (u1Φu2). It follows from the parametriza-
tion (32) of A ∈ SL(2,C) that V (ζA) = V (ζd(η)). The
remaining statement of (33) is contained in the follow-
ing lemma. For later convenience we state it for general
functions V on H.

Lemma 3 (Properties of SU(2)-bi-invariant functions)Sup-
pose SU(2) ⊂ H ⊆ GL(2,C). Let V be a function ofΦ ∈ H,
so that Φ = ζA with 0 �= ζ ∈ C and A ∈ SL(2,C) which
is SU(2)-bi-invariant in the sense that V (Φ) = V (u1Φu2)
for all u1, u2 ∈ SU(2). Then

V (ζA) = V (ζA−1) = V (ζεATεT) .

In particular, forH = SL(2,C) and d(η)= diag(e−η/2, eη/2)

V (d(η)) = V (d(−η)) .
Proof. Every element A ∈ SL(2,C) may be decomposed
as A = u1d(η)u2 with u1, u2 ∈ SU(2), η ∈ R, and d(η) as
in (32).

There exists a w ∈ SU(2) such that wd(η)w−1 =
d(η)−1 = d(−η), viz.

w =
(

0 −1
1 0

)
. (31)

It follows that

V (ζA) = V (ζd(η)) = V (ζwd(η)w−1) = V (ζd(η)−1)

= V (ζu−1
2 d(η)−1u−1

1 ) = V (ζA−1) .

The last equation follows from (15) with A substituted for
φ, since detA = 1.

8 Integration of the Higgs field
for H = SL(2, C)

After the integration of the Fermi fields, we obtained a
semi-effective Boltzmann factor B̂1 which still depends on
theHiggs fieldsφ on the links of the original lattice. One sees
from the result Proposition 1 of Sect. 6.4 forH = SL(2,C),
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that the only dependence of B̂1 on φ other than the depen-
dence on the block spin φ1 is in the factors e−V (φ(z,z+1)).
Therefore it only remains to compute the flow of the Higgs
potential. With the choice of block spin (7), the flow of the
effective potential is determined by the recursion relation

e−V n+1(Φ) =
∫

dφ1 dφ2 dφ3δ(φ1εφ
T
2 ε

Tφ3Φ
−1)

×e−V n(φ1)−V n(φ2)−V n(φ3) .

For φ ∈ SL(2,C), εφT
2 ε

T = φ−1
2 by (15).

It is easy to see that the bi-invariance property of V
passes through the recursion relation. Therefore we have
Lemma 3 available, with ζ = 1, permitting a change of
variable so that

e−V n+1(Φ) =
∫

dφ1dφ2dφ3δ(φ1φ2φ3Φ
−1)

×e−V n(φ1)−V n(φ2)−V n(φ3) .

Lemma 4 (Convolution) Under harmonic analysis on
SL(2,C), convolution goes into products. Thus if the square
integrable functions fi admit an expansion

fi(A) =
∫

dχtrχ

(
F̃i(χ)Tχ(A)

)

for i = 1, . . . , N , then
∫

dA1 . . .dANf1(A1) . . . fn(An)δ(A1 . . . ANA
−1)

=
∫

dχtrχ

(
F̃1(χ) . . . F̃N (χ)Tχ(A)

)
.

Herein, dχ is the Plancherel measure on SL(2,C), and
Tχ(A) are the representation operators for representations
of the unitary principal series (see AppendixA).

This is well known and generalizes to the other groups H.
Every element A of SL(2,C) may be parametrized as

A = u1d(η)u2, with u1, u2 ∈ SU(2) ,

d(η) =
(

e−η/2 0
0 eη/2

)
. (32)

It follows from gauge invariance that

V (A) = V (d(η)) = V (A−1) , (33)

so that the Higgs potential is a function of a single variable
η. We describe the flow of the effective Higgs potential. It
is derived by harmonic analysis on the non-compact group
SL(2,C) andwill involve the principal series representation
function P ρ(A) = 2 sin

( 1
2 ηρ

)
/ρ sinh η for real ρ.

Theorem 2 (Flowof theHiggs potential forH = SL(2,C))
Given the initial Higgs potential V (φ), define

b(ρ) =
∫

sinh2 ηdηe−V (d(η)) 2 sin
( 1

2 ηρ
)

ρ sinh η

for real ρ. Then after n RG-steps,

e−V n(d(η)) =
1
8π

∫ ∞

−∞
ρ2dρ[zz̄]2n [b(ρ)]N

2 sin
( 1

2 ηρ
)

ρ sinh η
,

with N = 3n.
The factor [zz̄]2n shows the essential role of the fermions.
Because of the recursions relation z1 = (z)2(z̄)−1 we

have (z1)2(z̄1)2 = (z)2(z̄)2.

The result of Theorem 2 is now an immediate conse-
quence of Lemma 4 and of Lemma 3.

The SL(2,C)-model is fairly trivial. The integration of
the “high frequency components” of the fermions does not
affect the flow of the Higgs potential. And the integration
of the “high frequency component” of the Higgs field φ does
not produce 4-fermion interactions, 6-fermion interactions,
or higher.

This is easy to understand. Because ψ(z) and ψ(z) are
independent variables, they may be transformed indepen-
dently. The fermionic part of the action will be invariant
under the SL(2,C) gauge transformations,

ψ(z) �→ A(z)ψ(z) ,

ψ(z) �→ ψ(z)A∗(z) ,

φ(z + 1, z) �→ A(z + 1)∗−1φ(z + 1, z)A(z)−1 .

This can be used to transform the parallel transporters in
the fermionic action away. Only the Higgs potential is not
SL(2,C)-invariant.

9 Effective Boltzmannian for general H

Here we derive the recursion relations for the coefficients
an

i of the Boltzmann factor for general H, starting from
an arbitrary action of the form (12).

Without loss of generality, we assume that the origi-
nal action lives on the lattice Λ0. This can be achieved
by rescaling.

Given the semi-effective Boltzmannian of Sect. 6.3, we
need to perform the integration over the Higgs fields, keep-
ing the block spin fixed. Switching to variablesφ1 = φ(z, z+
1), φ2 = φ(z+ 2, z+ 1) (sic!), φ3 = φ(z+ 2, z+ 3) we have
to compute the coefficients

a1
i [Φ] =

∫
dφ1dφ2dφ3â

1
i (z, z + 3)δ(φ1εφ

T
2 ε

Tφ3Φ
−1) .

Inserting (29), and using (30) and our notational conven-
tions, (9) takes the form

a1
i [Φ] =

∑
jkl

di
jkl

∫
dφ1dφ2dφ3aj [φ1]āk[φ2]al[φ3]

×δ (
φ1εφ

T
2 ε

Tφ3Φ
−1) .

The coefficients ai are SU(2)-bi-invariant functions. There-
fore Lemma 3 is applicable to them. We use this to make
the change of variable φ′

2 = εφTεT to obtain

a1
i [Φ] =

∑
jkl

di
jkl

∫
dφ1dφ′

2dφ3aj [φ1]ak[φ′
2]al[φ3]
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×δ(φ1φ
′
2φ3Φ

−1)

=
∑
jkl

di
jklaj ∗ ak ∗ al[Φ] .

Remembering the form of di
jkl, this demonstrates Theorem

1. The explicit coefficients are given in Theorem 1. Finally
we present the solutions of the recursion relations in terms
of the initial values a0

j .

Theorem 3 (Solution of the flow equations) For tempo-
rary use we introduce the notation (A)∗N = A∗A∗. . .∗A (N
factors) for theN -fold convolution product. In this notation

an
0 [Φ] = a0

0 ∗ (ā0
5 ∗ a0

0)
∗N [Φ] ,

an
1 [Φ] = a0

1 ∗ (ā0
4 ∗ a0

1)
∗N [Φ] ,

an
2 [Φ] = a0

2 ∗ (ā0
2 ∗ a0

2)
∗N [Φ] ,

an
3 [Φ] = a0

3 ∗ (ā0
3 ∗ a0

3)
∗N [Φ] ,

an
4 [Φ] = a0

4 ∗ (ā0
1 ∗ a0

4)
∗N [Φ] ,

an
5 [Φ] = a0

5 ∗ (ā0
0 ∗ a0

5)
∗N [Φ] ,

with N = 1
2 (3n − 1).

The Fourier coefficients ãn
j (Ξ) obey the same relations,

with ordinary products in place of convolution products.

The proof is immediate from Theorem 1. To use the recur-
sion relations, we need the starting values of the coefficients
ai(z, z+1), and their complex conjugates, that were already
given in (18).

10 Taking the logarithm

By straightforward computation one deduces

Proposition 2 (Effective action from effective Boltzman-
nian) Retaining the assumption L2 = −2[detφ]k, the coef-
ficients cni in the effective action (9) are obtained from the
coefficients an

j in the effective Boltzmannian (12) as follows:

cn0 = ln(an
0 ) ,

cn1 = b1 ,

cn2 = b2 + b21[detφ] ,

cn3 = b3 − b1b̄1 ,

cn4 = b̄4 − b̄1b2 + 2b1b3[detφ] − 2b21b̄1[detφ] ,

cn5 = b5 − b2b̄2 +
(

2b1b̄4 − 4
3
b21b̄2

)
[detφ]

+
(

2b̄1b4 − 4
3
b̄21b2

)
[detφ∗]

+
(
8b1b̄1b3 − 2b23 − 6b21b̄

2
1
)
[detφ][detφ∗] ,

where bi = an
i

an
0

and c̄n2 , c̄n4 are obtained by complex conju-
gation.

11 Asymptotic behavior after many RG-steps

We assume that z = z̄ = ± 1.
Theorem 3 gives the behavior of the coefficients of

the effective Boltzmannian after n steps in the form of
a convolution product of 2N + 1 = 3n factors a0

i [Φ] (with
N = 1

2 (3n − 1)).
The central limit theoremgives the asymptotic behavior

of such convolution products in the limitN �→ ∞, provided
that the coefficients a0

j [Φ]dΦ are normalizable measures, or
negatives of such. Assuming z = z̄ = ±1, this is always the
case for a0

0 and for a5
0, which enter the formula for the

exponentiated Higgs potential an
0 = e−V n

, and this is also
the case in all cases except for G = SU(2), H = GL(2,C)
for the other coefficients.

We need a central limit theorem forG-bi-covariant func-
tions on the non-compact groups H. The principle from
which it flows is as follows. Under appropriate conditions
(“good functions f”) the Fourier coefficient f̃(Ξ) for nor-
malized measures fdΦ has an isolated absolute maximum
at a special representation Ξ0. The prototype of such a re-
sult, which stands behind the central limit theorem on R,
is Lemma 5 below. As a result, f̃(Ξ)N , which is the Fourier
coefficient of f [Φ]∗N , is well approximated by a Gaussian,
and therefore f [Φ]∗N can be accurately computed as in-
verse transform of a Gaussian. The non-trivial part of the
proof of a central limit theorem is the control of errors.
To give a rigorous proof is outside the scope of this paper.
We will only present a heuristic derivation, following the
above outline.

In the following subsections, we consider the exponenti-
ated Higgs potential. The other coefficients in the effective
Boltzmannian can be treated in the same way, provided
the coefficients which enter into the recursion relation are
either positive or negative definite. This is true in all cases
except for G = SU(2), H = GL(2,C).

Lemma 5 (Fourier transformof normalizedmeasures onR)
Let f be an integrable and square integrable positive defi-
nite function on the real line with

∫
f(x)dx = 1. Then the

modulus of its Fourier transform f̃(k) =
∫

eikxf(x)dx has
a unique absolute maximum at k = 0 with f̃(0) = 1.

Proof. From the definition of the Fourier transform and
from

∫
fdx = 1 it follows that∣∣∣f̃(k)

∣∣∣2 =
∣∣∣f̃(0)

∣∣∣2 −
∫

dx dy [1 − cos k(x− y)]f(x)f(y) .

The second term is negative semi-definite and for any
k �= 0 it can only vanish if f is either a δ-function or a series
of δ-functions with supports whose distance is an integer
multiple of 2π/k. This is excluded by the assumption that f
is square integrable. Therefore the only absolute maximum
is at k = 0. The assertion f̃(0) = 1 is a restatement of∫
f(x)dx = 1.

11.1 The case H = SL(2, C)

We consider the SU(2)-bi-invariant function

f(Φ) = e−V (Φ) = f(d(η)) ,
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which is positive definite. By our assumptions, the additive
constant in V can be so chosen that f(Φ)dΦ is a normalized
measure on SL(2,C).

The Fourier coefficient is

f̃(ρ) =
∫

dΦf(Φ)P ρ(Φ−1)

=
∫

sinh2 ηdηf(d(η))
2 sin 1

2 ηρ

ρ sinh η
.

It is real, obeys f̃(ρ) = f̃(−ρ) and has an isolated absolute
maximum 1 at ρ = 0. This follows from the fact that
limρ�→0

2 sin 1
2 ηρ

ρ sinh η = 1,while | 2 sin 1
2 ηρ

ρη | ≤ 1 and |η−1 sinh η| >
1 for η �= 0.

It follows from the unique maximum property that

f̃(ρ) = e− b
2 ρ2

+ . . . ,

b = −f̃ ′′(0) =
1
12

∫
sinh2 ηdηf(d(η))η2 .

Now set B = Nb, N = 3n. To obtain the asymptotic
behavior of the exponentiated effective Higgs potential, we
have to back-transform f̃(η)N = e− B

2 ρ2
, i.e. compute

e−V n(d(η)) ∼
∫

ρ2dρ
8π

2 sin 1
2 ηρ

ρ sinh η
e− B

2 ρ2
.

The integral evaluates to

e−V n(d(η)) ∼ 1
(2πB)

3
2

η

4 sinh η
e− 1

8B η2
.

This completes the derivation of the asymptotic behavior
of the effective Higgs potential (14) for H = SL(2,C).

11.2 The group R+SU(2)

We specify the representations by s = iσ imaginary. SU(2)-
bi-covariant functions f of ru ∈ R+SU(2) depend only on
r, and the harmonic analysis amounts to a Mellin trans-
formation (cf. Appendix A), which in turn is related to a
standard Fourier transformation,

f̃(iσ) =
∫ ∞

0
drriσ−1f(r) =

∫ ∞

−∞
dxeiσxf(ex) .

Let f be positive definite and a good function. Then, by
Lemma 5, |f̃ | has a maximum at σ = 0 and

f̃(iσ) = e− b
2 σ2+iaσ + . . .

if f is normalized appropriately. The coefficients are

a = −i
∂

∂σ
f(iσ)

∣∣
σ=0 =

∫
dr
r

ln rf(r) ,

b = − ∂2

∂σ2 f(iσ)
∣∣
σ=0 =

∫
dr
r

ln2 rf(r) .

The exponentiated effective Higgs potential is given by the
following convolution product on R+SU(2):

e−V n

= a∗N+1
0 ∗ a∗N

5 ,

with N = 1
2 (3n − 1), ai = a0

i , a0 = e−V and a5 =
| detΦ|2e−V .

We choose the constant in V so that a0 ∗a5 is a normal-
ized measure on H and define N =

∫
dφe−V (φ). We have

to evaluate

e−V n(r) ∼
∫ ∞

−∞
dσriσã0(iσ)

(
ã0 ∗ a5

)N
(iσ) .

a0 ∗ a5dΦ is a convolution of normalizable measures and
therefore a normalizable measure itself. Since a0 is positive
definite, a0 ∗ a5 is positive definite, implying the unique
maximum property. As a consequence, there are constants
b > 0, b′ > 0 and a, a′ such that ã0(iσ) = Ne− b′

2 σ2+iσa′
,

˜(a0 ∗ a5)(iσ) = e− b
2 σ2+iσa. Upon insertion of this and after

a change of variables to x = ln r, the integral becomes
Gaussian and evaluates to

e−V n(r) ∼ N

(2πB)
1
2

exp
(

− 1
2B

ln2(reA)
)
,

with B = b′ + Nb, A = a′ + Na. Their explicit value
is determined by the starting Higgs potential V and is
obtained by applying (34).

11.3 The group GL(2, C)

This combines aspects of the previous two cases. It isworked
out in the same way, using the results of Appendix A. The
maximum of f̃(Ξ), Ξ = (l, s, ρ) is at l = 0, s = 0, ρ = 0.
The dominance of l = 0 gives independence of the asymp-
totic behavior of exp (−V n(ζd(η))) of the phase of ζ. The
group R+SL(2,C) is treated in the same way. Here, the
quantum number l is absent.

12 Model with gauge group U(2)

The results can be extended to the model with gauge group
U(2) and H = GL(2,C). To do so, we have to investigate
the consequences of an additional local U(1)-invariance.
Under a U(1)-transformation,

ψ(z) �→ e−iϑ(z)ψ(z) ,

ψ(z + 1) �→ eiϑ(z+1)ψ(z + 1) ,

φ(z, z + 1) �→ e−iϑ(z)φ(z, z + 1)eiϑ(z+1) .

Local U(1)-invariance implies that the Higgs-potential
V (ζA) is independent of the phase of ζ.

The block spin (7) is not U(1)-covariant, and must be
changed by a factor which involves the phase of detφn to

φn+1(z, z + 3an) = ei arg det φn(z+an,z+2an)φn(z, z + an)ε
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× φn(z + 2an, z + an)TεT

× φn(z + 2an, z + 3an) . (34)

It is appropriate to change also the definition (11) of k to

kn(z, z+an) =
1
4

ei arg det φn(z,z+an)ψεψ(z)×ψεψ(z+an) .

When these changes are made, the master integration for-
mulas (20)– (28) remain valid as they stand. Therefore
the recursion relations Theorem 1 for the coefficients an

j
remain literally valid, and also Corollary 1 remains valid
with the understanding that harmonic expansion of U(2)-
bi-covariant functions on GL(2,C) enters.

The initial values (18) change as a consequence of the
changed definition of k. In the formulas (18), detφ and
detφ∗ have to be replaced by | detφ|.

As a consequence, given that z = z̄ = ±1, all the quan-
tities a0

j [φ]dφ are normalizable measures, or negatives of
normalizable measure. It follows from this in the same way
as for the other models with this property that the model
has a RG-flow from the UV fixed point to a IR fixed point.
The asymptotic behavior of the Higgs potential is the same
as in the G = SU(2), H = GL(2,C) model.

13 Outlook

We are interested in the question how Higgs fields come
into an effective field theory at intermediate scales, and
what their geometrical interpretation is. A renormaliza-
tion group mechanism was proposed. The one-dimensional
model studied in this paper illustrates the mechanism in
part. Let us discusswhat has to be added andhow it involves
the conventional four dimensions which have been ignored
in the model. We call these the perpendicular directions.

In the one-dimensional model, the ordinary gauge the-
ory is a fixed point. We need a theory in which there are
some, albeit arbitrarily small, fluctuations of the length of
φ to start a non-trivial flow.

When the perpendicular directions are taken into ac-
count, two things are expected to happen.
(1) Coarsening in the perpendicular directions, which is
involved in the construction of a block spin φ from unitary
parallel transporters u (on the links along the extra direc-
tion), will produce φ in the linear span, of G. Therefore
they have a fluctuating length of some kind. (The non-
invertible φ will have measure zero.)
(2) At some scale we will be prevented from reducing to
a ordinary gauge theory by integrating out the length of
φ (more precisely the self-adjoint factor p in the polar de-
composition φ = pu, u unitary), because otherwise the
effective theory will become non-local in the perpendicular
directions. This will happen when the mass m determined
by the curvature at the minima of the Higgs potential falls
below the cutoff scale M .

In conclusion, there will be a domain of scales where
the effective theory needs a Higgs field for its locality. In
principle, one could also study the mechanisms envisaged
here by numerical means.

Let us now turn to the quark sector of the standard
model. We give a brief review of results of Olschewski and
Angermann taken from [15].

We imagine that all three generations of left handed
quarks belong to one irreducible representation space of
the holonomy group H.

Ignoring color, the representation space ofH in the stan-
dard model is a six-dimensional space VL ×C3, where VL is
the two-dimensional representation space of the left handed
gauge group GL = SU(2) × U(1). Similarly, the right
handed quarks belong to an isomorphic six-dimensional
representation space (VR ⊕ ṼR) × C3 of H, where VR and
ṼR are one-dimensional representation spaces of the right
handed gauge group GR = U(1) (with Y = +2/3 and
Y = −1/3, respectively) The Higgs fields in our sense map
between them:

Φ : (VR ⊕ ṼR) × C3 �→ VL × C3 . (35)

In a defect model [15], the Higgs fields Φ and their adjoints
Φ∗ are pictured as non-unitary parallel transporters across
a defect which has some extension in a fifth direction; cf.
Fig. 1 below. The left handed quarks live below the defect,
and the right handed quarks live above.

There will be a Higgs potential V (Φ). We imagine that
the Higgs potential is to be determined as the result of a
renormalization group flow, similarly as in the very simpli-
fied model of this paper. Unfortunately we are unable to say,
for now, where the flow starts. In the simplified model, the
asymptotic behavior of the Higgs model is quite insensitive
to where the flow starts. This reflects universality.

If the Higgs potential could be computed, the quark
masses could be determined, as explained in Sect. 3. The
value of Φ at the minimum of the Higgs potential will
contain the information that goes into the quark masses.

Writing ϕ for the conventional Higgs doublet,

ϕ =
(
ϕ0

ϕ+

)
, ϕ̃ =

(−ϕ̄+

ϕ̄0

)
,

ϕ : VR → VL

ϕ̃ : ṼR → VL
, (36)

the Higgs parallel transporter Φ through the defect will
have the form

Φ = (ϕMU , ϕ̃MD) :
(
VR ⊕ ṼR

)
× C3 → VL × C3 . (37)

Neglecting fluctuations of the Higgs fieldΦ around the min-
imum of the Higgs potential, MU and MD will be constant
3 × 3 matrices

MU ,MD : C3 �→ C3 . (38)

��� � ����� �
�

�� � �
�

�

�

�������	
�� ���	
��

Fig. 1. Bi-layered membrane
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The matrices MU ,MD can be diagonalized through a bi-
unitary transformation,

MU = A∗
LmUAR , mU = diag(mu,mc,mt) , (39)

MD = B∗
LmDBR , mD = diag(md,ms,mb) . (40)

Herein, mu, . . . are the quark masses, and AL, BL, AR, BR
are unitary. By a basis change,AR, BR can be transformed
away. The Kobayashi–Maskawa matrix is C = ALB

∗
L.

Consider now the elements of the holonomy groupHtot
of the whole theory, including the boundaries of the defect
which were not modeled in our one-dimensional theory.

The elements ofHtot are the parallel transporters along
paths which may pass through the defect, possibly several
times forth and back, and their inverses. The parallel trans-
porters along pieces of path above the defect will be of the
form UR1, where 1 is the 3 × 3 unit matrix, and UR are
diagonal 2 × 2 matrices whose non-vanishing entries are
representation operators of U(1), and the parallel trans-
porters along pieces of path below the defect will be unitary
matrices UL1 with

UL =
(
U11 U12

U21 U22

)
∈ SU(2) × U(1) . (41)

Going to unitary gauge ϕ0 = ρ, ϕ+ = 0, the parallel trans-
porter along a closed path which passes once across the
defect, forth and back, will be of the form

URΦ
∗ULΦ = UR

(
mU 0
0 mD

)
(42)

×
(
U111 CU12

C∗U21 U221

) (
mU 0
0 mD

)
ρ2 ,

where C is again the Kobayashi–Maskawa matrix. The
difference of the quark masses is responsible for the fact
that the holonomy groupH is larger than the unitary gauge
group. It involves non-unitary matrices and is therefore
non-compact.
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Appendix A: Harmonic analysis

Here we present details of the expansion of the SU(2)-bi-
invariant functions f(Φ) on H in the spherical functions
PΞ(Φ). They are associated with unitary representations
Ξ of H. The general expansion formula reads

f [Φ] =
∫

dΞf̃(Ξ)PΞ(Φ) ,

where dΞ is the restriction of the Plancherel measure on
H to representations which contribute to the expansion of
SU(2)-bi-invariant functions.

Denoting by Ξ the complex conjugate representation,
the complex conjugate function f̄ expands according to

f̄ [Φ] =
∫

dΞf̃(Ξ)PΞ(Φ) .

Harmonic analysis on SL(2, C)

We use the parametrization (32) of elements SL(2,C) in
terms of variables u1, u2 ∈ SU(2) and η ∈ R.

Integration with the Haar measure in these variables
can be written as∫

dφf(φ) =
∫

du1 du2 sinh2 ηdηf(u1d(η)u2) , (43)

where du is the normalized Haar measure on the group
SU(2). The formula involves a redundant integration over
the commutant of d(η) in SU(2).

We wish to use harmonic analysis on the groupSL(2,C)
to determine the RG-flow of functions f like the exponen-
tiated Higgs potential V in case H = SL(2,C). They are
functions on H = SL(2,C). We assume that V (d(η)) in-
creases sufficiently fast at large |η| to ensure that these
functions are square integrable on the group. This en-
sures [17, 18] that it can be expanded in representation
functions of the principal series of unitary representations
of SL(2,C).

The representations of the Lorentz group SO(3, 1) in
the principal series are labeled by χ = (l, ρ), where l labels
a representation of SO(2), l = 0,±1,±2, . . . and ρ is a
real number. SL(2,C) is the twofold covering of SO(3, 1).
Its principal series representations are labeled in the same
way, except that l = 0,± 1

2 ,±1, . . .. The representation
operators Tχ(A) act on Hilbert spaces Hχ. The expansion
of a square integrable function on the group reads3

f(A) =
∫

dχtrχ

(
F̃ (χ)Tχ(A)

)
,

where dχ is the Plancherel measure on SL(2,C)
∫

dχ . . . =
∑

l

∫ ∞

−∞
(l2 + ρ2)

dρ
8π

. . . ,

trχ is the trace over Hχ, and F̃ (χ) is an operator in Hχ.
The inversion formula reads

F̃ (χ) =
∫

SL(2,C)
dφf(φ)Tχ(φ−1) .

We apply this to the functions f(A) which are bi-invariant
in the sense that f(u1Au2) = f(A) for all u1, u2 ∈ SU(2). A
great simplification results. The representation space Hχ

decomposes into irreducible representations of SU(2) as
follows [19,20]. Every irreducible representation of SU(2)
occurs at most once, and the 2k+1-dimensional represen-
tation occurs if k ≥ |l|, k − l integer. In particular, the

3 l = 1
2 m in Rühl’s notation [19].
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trivial representation of SU(2) occurs only for l = 0. Us-
ing this decomposition, one introduces in Hl the so-called
canonical basis {|k,m >} where k ≥ |l| fixes the SU(2)-
representation, and m = −k, . . . , k in integer steps. We
have m = 0 if k = 0. The representation functions in the
canonical basis are known; in particular, [19]

P ρ(A) = 〈0, 0|T (0,ρ)(A)|0, 0〉 =
2 sin

( 1
2 ηρ

)
ρ sinh η

(44)

for A = u1d(η)u2, ui ∈ SU(2).

Lemma 6 If f(A) = f(u1Au2) for all u1, u2 ∈ SU(2),
then

〈k,m|F̃ (χ)|k′,m′〉 = δl0δk0δk′0f̃(ρ)

for some f̃(ρ) ∈ C.

This is well known; cf. [19].
Using the lemma, the expansion simplifies,

f(A) =
∫ ∞

−∞

ρ2dρ
8π

f̃(ρ)〈0, 0|T (0,ρ)(A)|0, 0〉 .

The normalization of the Plancherel measure depends on
the normalization of the Haar measure. We use the Haar
measure (43) in the parametrization A = u1d(η)u2.

In summary, the relevant representations Ξ = (ρ) are
labeled by one real parameter ρ,

∫
dΞ . . . =

∫ ∞

−∞

ρ2dρ
8π

. . . ,

and the spherical function P ρ is given by (44). Taking
its complex conjugate, we see that the complex conjugate
representation is Ξ = (−ρ).

Since the u1, u2 integrations are trivial, the inversion
formula simplifies to the form used in Corollary 1.

Let us note that the inversion formula can also be ob-
tained by elementary means, using the orthogonality of the
sin-function,

∫ ∞

−∞
dρ sin

1
2
ηρ sin

1
2
η′ρ

= 2π[δ(η − η′) − δ(η + η′)] ,

and f̃(−ρ) = f̃(ρ). In this way normalization factors can
be fixed. The group theoretical interpretation is needed
to make Lemma 4 available, though, in order to convert
convolutions into products.

In applications we use the δ-function on SL(2,C) with
defining property

∫
dφδ(φ)f(φ) = f(1) .

Note that its normalization depends on the normaliza-
tion of the Haar measure.

Harmonic analysis on H = R+SU(2)

Elements Φ ∈ H = R+SU(2) have the form Φ = ru, with
positive real r and u ∈ SU(2). SU(2)-bi-invariant func-
tions f(Φ) depend only on r. Therefore harmonic analysis
simplifies to a Mellin transform,

f(ru) =
∫ i∞

−i∞

ds
2πi

rsf̃(s) , f̃(s) =
∫ ∞

0
drr−s−1f(ru) .

Thus, the representations Ξ of H which appear in the
expansion of SU(2)-bi-invariant functions, are specified by
pure imaginary numbers s, and the Haar measure and
spherical function are

∫
dΞ . . . =

∫
ds
2πi

. . . , PΞ(ru) = r−s .

The complex conjugate representation is Ξ = (−s).

Harmonic analysis on H = GL(2, C)

Elements of ofGL(2,C) have the form Φ = ζA, 0 �= ζ ∈ C,
A ∈ SL(2,C). Note that the pair (−ζ,−A) determines
the same element as (ζ, A), and that SU(2)-bi-ivariant
functions f obey f(−ζA) = f(ζA) because (−1) ∈ SU(2).

It follows that we have to combine harmonic analysis
on SL(2,C) with harmonic analysis on the multiplicative
group C \ {0}.

Consider functions g of ζ ∈ C\{0} with g(−ζ) = g(ζ).
Let ζ = eiϑ/2r, r > 0. Then

g(ζ) =
∑
l∈Z

∫
ds
2πi

eilϑrsg̃(l, s) ,

g̃(l, s) =
∫ 2π

0

dϑ
2π

dre−ilϑr−s−1g(eiϑ/2r) .

Combining with harmonic analysis onSL(2,C), we see that
the representations Ξ of GL(2,C) which appear in the ex-
pansion of SU(2)-bi-invariant square integrable functions
are labeled by Ξ = (l, s, ρ), with l ∈ Z, s imaginary, and
ρ real, with Plancherel measure and spherical function

∫
dΞ . . . =

∑
l∈Z

∫ ∞

−i∞

ds
2πi

∫ ∞

−∞

ρ2dρ
8π

. . . ,

PΞ(eiϑ/2rA) = eilϑrsP ρ(A) ,

where P ρ(A) is the spherical function on SL(2,C).
The complex conjugate representation is labeled byΞ =

(−l,−s,−ρ).
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T. Prüstel (in preparation)

5. G. Mack, Commun. Math. Phys. 219, 141 (2001)
6. G. Mack, Proceedings Steklov Math. Institute 226, 208

(1999)

7. A. Dimakis, F. Müller-Hoissen, J. Phys. A 27, 3159 (1994);
A. Dimakis, F. Müller-Hoissen, T. Striker, J. Phys. A 26,
1927 (1993)

8. J.F. Cornwell, Group theory in physics II (Academic Press,
London 1984)

9. A. Hebecker, M. Ratz, Nucl. Phys. B 370, 3 (2003)
10. C. Lehmann, G. Mack, T. Prüstel, hep-ph/0305331 (2003)
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